
Relevance of cis- and trans-dichloride Ru intermediates in Grubbs-II

olefin metathesis catalysis (H2IMesCl2RuQCHR)w

Diego Benitez, Ekaterina Tkatchouk and William A. Goddard III*

Received (in Cambridge, UK) 8th September 2008, Accepted 2nd October 2008

First published as an Advance Article on the web 23rd October 2008

DOI: 10.1039/b815665d

Using density functional theory with the B3LYP and M06

functionals, we show conclusively that the (H2IMes)(Cl)2Ru

olefin metathesis mechanism is bottom-bound with the chlorides

remaining trans throughout the reaction, thus attempts to effect

diastereo- and enantioselectivity should focus on manipulations

that maintain the trans-dichloro Ru geometry.

Olefin metathesis1 has become a powerful ubiquitous reaction

for forming carbon–carbon double bonds. Improved ruthe-

nium olefin metathesis catalysts exhibiting higher initiation

rates,2 differential monomer reactivity,3 enantioselectivity,4

and improved thermal stability5 have been reported recently.

A long-standing controversy6 has been whether the mechan-

ism involves an isomerization from the initial trans-dichloro

Ru (Fig. 1b) to a cis-dichloro Ru geometry (Fig. 1c) leading to

a side-on mechanism. This mechanism was proposed by

Grubbs7 to rationalize the observed reactivity and selectivity,

but without direct experimental evidence. We report here first

principles studies showing conclusively that the mechanism is

bottom-bound, with the chlorides remaining trans throughout

the reaction, which explains available experimental evidence.

Thus attempts to effect stereo- and enantioselectivity should

focus on manipulations that maintain the trans-dichloro Ru

geometry.

It is generally believed that the mechanism8 of Ru catalyzed

olefin metathesis involves a symmetric process in which a Ru

carbene coordinated with a substrate olefin (square pyramidal)

rearranges via a pseudorotation to a metallacyclobutane (tri-

gonal bipyramidal) which then rearranges productively to

form a coordinated product olefin and a new Ru carbene

(square pyramidal). The structures for the various intermedi-

ates have been established from low temperature 1H-NMR

studies,9 X-ray crystallography structural data of isolated

stable intermediates,10 and theoretical investigations.11

Based on their density functional theory (DFT) studies

(BP86) on the relative energies of the bottom- and side-bound

pathways, Cavallo and Correa concluded11b that the preferred

reaction pathway is a delicate balance between electronic,

steric, and solvent effects.12 This has led to several reports

considering the side-bound pathway as highly significant, if

not the most likely operative pathway.3,6 We consider that this

lack of a clear understanding of the catalytic pathway (side vs.

bottom) is hindering the development of selective metathesis

catalysts. To provide a basis for assessing the side- and

bottom-bound metathesis pathways, we applied DFT methods

to investigate the relative energies and the expected E : Z olefin

product ratio of the cis- and trans-dichloro Ru pathways for

the metathesis of E- and Z-2-butene with the Grubbs-II

benzylidene catalyst (Fig. 1a).

Truhlar and Zhao reported13 that medium-range non-

covalent interactions (dispersion forces) can have a dramatic

effect on the ruthenium tricyclohexylphosphine (PCy3) bond

dissociation energies for both the first and second generation

Grubbs catalysts. The M06-class14 of density functionals

extend DFT to contain a number of new parameters which

were fitted against several databases of experimental data. The

M06 functional is a new hybridmeta-GGA exchange–correlation

functional that leads to impressive accuracy for a very large

validation set of systems, including van der Waals dimers,

reactions, and transition metal complexes.15 Chen et al.

recently validated8a,16 M06-L predicted values with gas-phase

collision-induced phosphine dissociation (CID) experiments

by tandem ESI-MS on Ru and Au complexes. We have shown

that the B3LYP flavor of DFT with the LACV3P++** basis

set properly describes the energies of intermediates relevant to

olefin metathesis.17

Here we apply both the M06 and B3LYP functionals to

compare the cis- and trans-dichloro Ru metathesis mechanism

pathways. Jaguar 7.0 (release 207) software18 was used for all

calculations. We performed geometry optimizations in the gas

phase at the B3LYP/LACVP** level. The B3LYP analytic

Hessian was calculated to obtain the vibrational frequencies,

Fig. 1 (a) Metathesis reaction of 2-butene with Grubbs-II benzyl-

idene catalyst to produce b-methyl styrene. Proposed geometries for

the (b) bottom-bound and (c) side-bound metathesis pathways.
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which in turn were used to obtain the zero point and thermo-

dynamic corrections at 298 K. Single point energies were

computed with the B3LYP and M06 functionals with

LACV3P++**(2f) for Ru and 6-311++G** basis sets19 for

all other atoms. Solvent corrections for CH2Cl2 are based on

single point self-consistent Poisson–Boltzmann continuum

solvation calculations (using e = 8.93 and R0 = 2.33 Å) using

the PBF module in Jaguar.

Fig. 2 shows the B3LYP computed DH profile (kcal mol�1,

298 K in CH2Cl2) for the side-bound (dotted line) and bottom-

bound (solid line) reaction for (H2IMes)(Cl)2RuQCHPh

(Grubbs-II) metathesis catalyst with Z-2-butene. The coordi-

nation of Z-2-butene to the 14-electron activated species A is

endothermic by 2.9 (E) and 3.4 (Z) kcal mol�1 for the bottom-

bound pathway, while it is 15.7 (E) and 9.9 (Z) kcal mol�1 for

the side-bound geometry. The olefin coordinated structure (1B

and 1E) leads to the metallacyclobutane (1C and 1F), followed

by productive rupture of the ruthenacycle via transition states

1TSCD and 1TSFG leading to structures where the product

(E- or Z-b-methyl styrene) is coordinated (1D and 1G).

Interestingly, the formation of the Z olefin product via the

side-bound pathway (Fig. 2. blue dotted line), is B10 kcal

mol�1 lower in energy (1TSFG) than that for the E olefin

product. This suggests that if the side-bound pathway could be

made operative, the stereochemistry would be retained, not

consistent with experimental observations.20 In contrast, the

favored bottom-bound pathway shows a barrier of 9.7 and

10.7 kcal mol�1 for the formation of E and Z olefin products

respectively. Given the low barriers calculated, we expect the

E : Z ratio to be dominated by the thermodynamic difference

of 3.1 kcal mol�1 corresponding to an E :Z ratio of 146 : 1 at

B40 1C, which agrees with the experimental E :Z ratio of

420 : 1 (1H-NMR detection limit).21

Fig. 3 shows the B3LYP DH profile (kcal mol�1, 298 K in

CH2Cl2) for the analogous metathesis reaction with E-2-

butene for which an increased rate of formation of the E

product is predicted by the bottom-bound pathway. However,

the side-bound pathway lies 9.8 and 18.6 kcal mol�1

(2TSBC vs. 2G and 2TSCD vs. 2TSFG) higher in energy than

the bottom-bound pathway for the E and Z product pathways

respectively.

The cis-dichloro pathway lies above the trans-dichloro

pathway by 10.0 and 9.2 kcal mol�1 for the metathesis with

Z- and E-2-butene respectively in CH2Cl2 for the production

of any isomer of b-methyl styrene. This, in addition to the

Fig. 2 B3LYP computed energy profile (DH in CH2Cl2 at 298 K in

kcal mol�1) for the bottom- and side-bound metathesis pathways for

Z-2-butene with Grubbs-II benzylidene catalyst.

Fig. 3 B3LYP computed energy profile (DH in CH2Cl2 at 298 K in

kcal mol�1) for the bottom- and side-bound metathesis pathways for

E-2-butene with Grubbs-II benzylidene catalyst.

Fig. 4 M06 computed energy profile (DH in CH2Cl2 at 298 K in

kcal mol�1) for the bottom- and side-bound metathesis pathways for

Z-2-butene with Grubbs-II benzylidene catalyst.

Fig. 5 M06 computed energy profile (DH in CH2Cl2 at 298 K in

kcal mol�1) for the bottom- and side-bound metathesis pathways for

E-2-butene with Grubbs-II benzylidene catalyst.
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predicted inconsistency in the stereoisomer ratio for the side-

on pathway, indicates that B3LYP predicts that the trans-

dichloro Ru mechanism is the only operating pathway.

We also performed single point energy calculations with the

M06 functional using the same LACV3P++**(2f) basis set

(Fig. 4 and 5). M06 agrees with B3LYP that the side-on

process is substantially higher than the bottom-bound (on

average M06 puts the rate limiting cis-chloride transition

states 10.7 kcal mol�1 more unfavorable than the trans-

chloride transition states). In addition, M06 also predicts that

if the side-bound pathway were operative, the rate of produc-

tion of Z olefins would be much faster than that of E olefins

when using Z-2-butene as substrate and the opposite when

using E-2-butene.

The most notable difference between the M06 and B3LYP

calculated potential energy surfaces is that M06 predicts that

the binding for Z- and E-2-butene to Ru active species (A) is

exothermic by 13.6 and 13.8 kcal mol�1 while B3LYP finds

this association to be endothermic by 2.9 and 4.6 kcal mol�1,

respectively. Chen et al. estimated8a gas phase ethylene

and norbornene coordination energies by CID to a similar

Ru complex and found them to be highly exothermic

(B18 kcal mol�1), thus we believe that the attractive

non-covalent interactions described by the M06 functional are

essential in the prediction of similar processes in transition metal

complexes. However, we find that M06 and B3LYP are in

relatively close agreement for the description of the metathesis

process that does not involve the coordination or de-coordi-

nation of olefin. This is expected since B3LYP has been shown

comprehensively to produce good descriptions of reaction

profiles for transition metal complexes. However, B3LYP

underestimates the coordination energy as a consequence of

the lack of medium-range attractive interactions.

An upper bound for the energy of the rate-determining step

can be estimated from initiation experiments performed2 by

Grubbs using UV-Vis and 31P-NMR spectroscopies.z Our

barriers for both E and Z products are B10 kcal mol�1 which

is consistent with experimental upper bound from UV-Vis

spectroscopy of B15 kcal mol�1 and the upper bound of

18.8 kcal mol�1 from 31P-NMR spectroscopy of a similar

metathesis reaction.

We consider that two factors play an important role in

making the cis-chloride pathway much worse than the trans-

chloride. The electronic factor can be assessed by examining

the barrier for the E metathesis with E-2-butene which in-

dicates that the side-on pathway is 10.0 kcal mol�1 with

B3LYP but only 5.9 kcal mol�1 with M06 worse than bottom-

bound. In addition to electronic effects, the Z process imposes

steric penalties for the side-on process which makes it an

additional 10 kcal mol�1 with B3LYP and 8.4 kcal mol�1

with M06 higher than the E process. Our results show that the

rates for the metathesis of E- or Z-2-butene via the cis-chloride

pathway would be infinitesimal compared to the dominant

trans-chloride pathway. However, if there were a way to

prevent the bottom-bound pathway and stabilize the cis-

dichloro geometry, then the side-bound could lead to retention

of the diastereochemistry of the substrate olefin.

The popular B3LYP functional predicts endothermic olefin

binding energies, while the newM06 functional predicts highly

exothermic associations (consistent with experiment) for

E- and Z-2-butene as a consequence of attractive medium-

range interactions. We show that the bottom-bound pathway

(through the trans-dichloro Ru geometry) is the only operative

pathway in Grubbs-II metathesis catalysis. Both the computed

barriers and the predicted E :Z olefin product ratio are con-

sistent with experiment only for the bottom-bound pathway.

Based on our results, we suggest that catalyst design should

focus on trans-Ru dichloro or bottom-bound structures.
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